Download Data Mining in Biomedicine (Springer Optimization and Its by Panos M. Pardalos, Vladimir L. Boginski, Alkis Vazacopoulos PDF

By Panos M. Pardalos, Vladimir L. Boginski, Alkis Vazacopoulos

ISBN-10: 0387693181

ISBN-13: 9780387693187

This quantity provides an in depth number of contributions overlaying points of the interesting and significant examine box of information mining recommendations in biomedicine. assurance contains new ways for the research of biomedical info; functions of information mining concepts to real-life difficulties in scientific perform; entire experiences of contemporary developments within the box. The e-book addresses incorporation of knowledge mining in primary components of biomedical study: genomics, proteomics, protein characterization, and neuroscience.

Show description

Read or Download Data Mining in Biomedicine (Springer Optimization and Its Applications) PDF

Best biostatistics books

Biology by Numbers: An Encouragement to Quantitative Thinking

A pragmatic undergraduate textbook for maths-shy biology scholars displaying how uncomplicated maths finds very important insights.

Kinetics for the Life Sciences: Receptors, Transmitters and Catalysts

This booklet introduces the reader to the kinetic research of quite a lot of organic procedures on the molecular point. It exhibits that an analogous strategy can be utilized to unravel the variety of steps for a variety of platforms together with enzyme reactions, muscle contraction, visible conception, and ligand binding.

Theoretische Okologie: Eine Einfuhrung

Dieses Buch ist als EinfUhrung in die Theoretische Okologie gedacht. Den Begriff "okologisches Modell" habe ich im Titel absichtlich vermieden, denn hierzu ziihlen ganz verschiedene Methoden der mathematischen Beschreibung von okologischen V orgiingen. Ziel einer Theorie ist es, ein Verstandnis fUr die Vor gange und funktionellen Zusammenhange eines Fachgebietes zu erlangen.

Extra info for Data Mining in Biomedicine (Springer Optimization and Its Applications)

Example text

Hammer. Pattern-Based Clustering and Attribute Analysis, RUTCOR Research Report, RRR 10-2003, Soft Computing (in print). 3. G. Alexe, S. Alexe, P. L. Hammer, L. Liotta, E. Petricoin, and M. Reiss. Logical Analysis of the Proteomic Ovarian Cancer Dataset. Proteomics, 4: 766-783, 2004. 4. G. Alexe, S. L. Hammer, and B. Vizvari. Pattern-Based Feature Selection in Genomics and Proteomics. RUTCOR Research Report, RRR 7-2003. 5. S. L. Hammer. Accelerated Algorithm for Pattern Detection in Logical Analysis of Data.

Statistical Learning Theory. Wiley-Interscience, New York, 1998. Exploring Microarray Data with Correspondence Analysis Stanislav Busygin and Panos M. edu S u m m a r y . Due to the rapid development of DNA microarray chips it has become possible to discover and predict genetic patterns relevant for various diseases on the basis of exploration of massive data sets provided by DNA microarray probes. A number of data mining techniques have been used for such exploration to achieve the desirable results.

Pontil, T. Poggio, V. Vapnik. Feature selection for SVMs. Proceedings of the NIPS 2000 Conference, 2001. 11. E. P. Xing and R. M. Karp. CLIFF: Clustering of high-dimensional microarray data via iterative feature filtering using normalized cuts. Bioinformatics Discovery Note, 1:1-9, 2001. 12. High-Density Array Pattern Interpreter (HAPI). edu/hapi/ 13. National Library of Medicine - MeSH. html 14. Hierarchy of keywords from literature associated with the top 25 ALL genes reported by correspondence analysis.

Download PDF sample

Data Mining in Biomedicine (Springer Optimization and Its Applications) by Panos M. Pardalos, Vladimir L. Boginski, Alkis Vazacopoulos

by Kevin

Rated 4.69 of 5 – based on 37 votes